Better to give than to receive: Predictive directional measurement of volatility spillovers

Diebold–Yilmaz (2012): Generalized VAR Spillover Framework


A. Tujuan & Intuisi Utama

🇮🇩
Kerangka Diebold–Yilmaz (2012) bertujuan mengukur dan memantau spillover (penularan) volatilitas/ketidakpastian antar pasar/variabel. Keunggulan kunci artikel ini adalah penggunaan Generalized VAR variance decomposition yang tidak bergantung pada urutan variabel (order-invariant), sehingga menghindari bias dari identifikasi Cholesky.

🇬🇧
Diebold–Yilmaz (2012) provides a framework to measure and monitor spillovers (transmission) of volatility/uncertainty across markets/variables. Its key advantage is using generalized VAR variance decomposition, which is order-invariant, avoiding the ordering bias inherent in Cholesky identification.


B. Spesifikasi Model VAR(p)

🇮🇩
Sistem dinamika antar-variabel dimodelkan dengan VAR(p):xt=k=1pΦkxtk+εt,εt(0,Σ)\mathbf{x}_t = \sum_{k=1}^{p}\mathbf{\Phi}_k \mathbf{x}_{t-k} + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim (0,\boldsymbol{\Sigma})

Keterangan:

  • xt\mathbf{x}_t​: vektor variabel endogen (N×1)(N\times 1)(N×1)
  • Φk\mathbf{\Phi}_k​: matriks koefisien lag ke-kkk
  • pp: lag optimal
  • εt\boldsymbol{\varepsilon}_t​: inovasi (shock)
  • Σ\boldsymbol{\Sigma}: kovarians inovasi

🇬🇧
Dynamic interactions are modeled using a VAR(p):xt=k=1pΦkxtk+εt,εt(0,Σ)\mathbf{x}_t = \sum_{k=1}^{p}\mathbf{\Phi}_k \mathbf{x}_{t-k} + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim (0,\boldsymbol{\Sigma})

Where:

  • xt\mathbf{x}_t​: N×1N\times 1 vector of endogenous variables
  • Φk\mathbf{\Phi}_k: lag-kk coefficient matrices
  • pp: optimal lag length
  • εt\boldsymbol{\varepsilon}_t​: innovations (shocks)
  • Σ\boldsymbol{\Sigma}: innovation covariance matrix

C. Representasi Moving Average (MA)

🇮🇩
VAR dapat dinyatakan sebagai MA tak hingga:xt=h=0Ahεth,A0=I\mathbf{x}_t=\sum_{h=0}^{\infty}\mathbf{A}_h\boldsymbol{\varepsilon}_{t-h}, \quad \mathbf{A}_0=\mathbf{I}

Representasi ini penting karena FEVD dihitung dari respons dinamis Ah\mathbf{A}_hAh​.

🇬🇧
The VAR admits an infinite MA representation:xt=h=0Ahεth,A0=I\mathbf{x}_t=\sum_{h=0}^{\infty}\mathbf{A}_h\boldsymbol{\varepsilon}_{t-h}, \quad \mathbf{A}_0=\mathbf{I}

This matters because FEVD is computed from dynamic responses Ah\mathbf{A}_hAh​.


D. Generalized FEVD (GFEVD) – Inti Metode

🇮🇩
Untuk menghindari masalah urutan variabel, digunakan Generalized FEVD. Kontribusi shock variabel jjj terhadap kesalahan prediksi variabel iii pada horizon HHH:θijg(H)=σjj1h=0H1(eiAhΣej)2h=0H1(eiAhΣAhei)\theta^{g}_{ij}(H)= \frac{ \sigma^{-1}_{jj}\sum_{h=0}^{H-1}( \mathbf{e}_i’\mathbf{A}_h\boldsymbol{\Sigma}\mathbf{e}_j )^2 }{ \sum_{h=0}^{H-1}( \mathbf{e}_i’\mathbf{A}_h\boldsymbol{\Sigma}\mathbf{A}_h’\mathbf{e}_i ) }

Karena GFEVD tidak harus menjumlah 1 per baris, dilakukan normalisasi:θ~ijg(H)=θijg(H)j=1Nθijg(H),j=1Nθ~ijg(H)=1\tilde{\theta}^{g}_{ij}(H)= \frac{\theta^{g}_{ij}(H)}{\sum_{j=1}^{N}\theta^{g}_{ij}(H)}, \quad \sum_{j=1}^{N}\tilde{\theta}^{g}_{ij}(H)=1

🇬🇧
To avoid ordering dependence, the framework uses Generalized FEVD. The contribution of shocks from jjj to the HHH-step-ahead forecast error variance of iii:θijg(H)=σjj1h=0H1(eiAhΣej)2h=0H1(eiAhΣAhei)\theta^{g}_{ij}(H)= \frac{ \sigma^{-1}_{jj}\sum_{h=0}^{H-1}( \mathbf{e}_i’\mathbf{A}_h\boldsymbol{\Sigma}\mathbf{e}_j )^2 }{ \sum_{h=0}^{H-1}( \mathbf{e}_i’\mathbf{A}_h\boldsymbol{\Sigma}\mathbf{A}_h’\mathbf{e}_i ) }

Because generalized shares may not sum to 1 row-wise, they are normalized:θ~ijg(H)=θijg(H)j=1Nθijg(H),j=1Nθ~ijg(H)=1\tilde{\theta}^{g}_{ij}(H)= \frac{\theta^{g}_{ij}(H)}{\sum_{j=1}^{N}\theta^{g}_{ij}(H)}, \quad \sum_{j=1}^{N}\tilde{\theta}^{g}_{ij}(H)=1


E. Total Spillover Index

🇮🇩
Indeks spillover total mengukur proporsi kontribusi lintas-variabel (off-diagonal):Sg(H)=ijθ~ijg(H)N×100S^{g}(H)=\frac{\sum_{i\neq j}\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Interpretasi: semakin tinggi Sg(H)S^{g}(H)Sg(H), semakin kuat keterkaitan sistemik (contagion) antar variabel/pasar.

🇬🇧
The total spillover index measures the share of cross-variable (off-diagonal) contributions:Sg(H)=ijθ~ijg(H)N×100S^{g}(H)=\frac{\sum_{i\neq j}\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Interpretation: higher Sg(H)S^{g}(H)Sg(H) implies stronger systemic interconnectedness/contagion.


F. Directional Spillovers (Arah Spillover)

1) FROM Others (diterima)

🇮🇩Sig(H)=jiθ~ijg(H)N×100S^{g}_{i\leftarrow \cdot}(H)=\frac{\sum_{j\neq i}\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Mengukur seberapa besar variabel iii menerima shock dari variabel lain.

🇬🇧Sig(H)=jiθ~ijg(H)N×100S^{g}_{i\leftarrow \cdot}(H)=\frac{\sum_{j\neq i}\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Measures how much variable iii receives shocks from others.

2) TO Others (dikirim)

🇮🇩Sig(H)=jiθ~jig(H)N×100S^{g}_{i\rightarrow \cdot}(H)=\frac{\sum_{j\neq i}\tilde{\theta}^{g}_{ji}(H)}{N}\times 100

Mengukur seberapa besar variabel iii mengirim shock ke variabel lain.

🇬🇧Sig(H)=jiθ~jig(H)N×100S^{g}_{i\rightarrow \cdot}(H)=\frac{\sum_{j\neq i}\tilde{\theta}^{g}_{ji}(H)}{N}\times 100

Measures how much variable iii transmits shocks to others.


G. Net Spillover (Posisi Transmitter vs Receiver)

🇮🇩Sig(H)=Sig(H)Sig(H)S^{g}_{i}(H)=S^{g}_{i\rightarrow \cdot}(H)-S^{g}_{i\leftarrow \cdot}(H)

  • Sig(H)>0S^{g}_{i}(H)>0Sig​(H)>0: iii adalah net transmitter
  • Sig(H)<0S^{g}_{i}(H)<0Sig​(H)<0: iii adalah net receiver

🇬🇧Sig(H)=Sig(H)Sig(H)S^{g}_{i}(H)=S^{g}_{i\rightarrow \cdot}(H)-S^{g}_{i\leftarrow \cdot}(H)

  • >0>0>0: iii is a net transmitter
  • <0<0<0: iii is a net receiver

H. Net Pairwise Spillover (Dua Arah i vs j)

🇮🇩Sijg(H)=θ~jig(H)θ~ijg(H)N×100S^{g}_{ij}(H)=\frac{\tilde{\theta}^{g}_{ji}(H)-\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Jika positif → dominasi spillover i → j (secara neto). Jika negatif → dominasi j → i.

🇬🇧Sijg(H)=θ~jig(H)θ~ijg(H)N×100S^{g}_{ij}(H)=\frac{\tilde{\theta}^{g}_{ji}(H)-\tilde{\theta}^{g}_{ij}(H)}{N}\times 100

Positive values indicate net dominance i → j; negative values indicate net dominance j → i.


I. Analisis Dinamis (Rolling Window)

🇮🇩
Untuk melihat perubahan spillover dari waktu ke waktu (mis. sebelum–saat–sesudah krisis), VAR dan GFEVD diestimasi pada rolling window (jendela geser) dengan panjang tetap. Output utamanya biasanya:

  • grafik Total Spillover
  • grafik Net Spillover per variabel
  • (opsional) Pairwise Net Spillover antar pasangan variabel

🇬🇧
To capture time variation (e.g., pre-/during-/post-crisis), the VAR and GFEVD are estimated using a fixed-length rolling window. Typical outputs include:

  • Total spillover plot
  • variable-specific net spillover plots
  • (optional) pairwise net spillover plots

J. Catatan Implementasi untuk Paper Anda (Praktis)

🇮🇩

  • Pilih pp (lag VAR) dan HH (forecast horizon).
  • Pastikan variabel stasioner (atau gunakan transformasi yang sesuai).
  • Laporkan: Sg(H)S^g(H), TO/FROM, NET, dan (bila perlu) pairwise.
  • Interpretasi kebijakan: identifikasi variabel yang menjadi sumber guncangan saat episode krisis.

🇬🇧

  • Choose ppp (VAR lags) and HHH (forecast horizon).
  • Ensure stationarity (or apply appropriate transformations).
  • Report: Sg(H)S^g(H), directional TO/FROM, NET, and (if needed) pairwise.
  • Policy interpretation: identify which variables act as shock transmitters during crisis episodes.