Diebold–Yilmaz (2012) Spillover Framework

(Modeling & Equations )


1. VAR(p) Model

🇮🇩 Indonesia

xt=k=1pΦkxtk+εt,εt(0,Σ)\mathbf{x}_t = \sum_{k=1}^{p} \mathbf{\Phi}_k \mathbf{x}_{t-k} + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim (0,\boldsymbol{\Sigma})

Keterangan simbol:

  • xt\mathbf{x}_t: vektor variabel endogen (N×1)(N \times 1)
  • Φk\mathbf{\Phi}_k​: matriks koefisien VAR lag ke-kk
  • pp: panjang lag VAR
  • εt\boldsymbol{\varepsilon}_t: vektor inovasi (shock)
  • Σ\boldsymbol{\Sigma}: matriks kovarians inovasi

🇬🇧 English

xt=k=1pΦkxtk+εt,εt(0,Σ)\mathbf{x}_t = \sum_{k=1}^{p} \mathbf{\Phi}_k \mathbf{x}_{t-k} + \boldsymbol{\varepsilon}_t, \quad \boldsymbol{\varepsilon}_t \sim (0,\boldsymbol{\Sigma})

Notation:

  • xt\mathbf{x}_t​: N×1N \times 1 vector of endogenous variables
  • Φk\mathbf{\Phi}_k​: VAR coefficient matrix at lag kk
  • pp: VAR lag length
  • εt\boldsymbol{\varepsilon}_t​: innovation vector
  • Σ\boldsymbol{\Sigma}: covariance matrix of innovations

2. Moving Average (MA) Representation

🇮🇩 Indonesia

xt=h=0Ahεth,A0=I\mathbf{x}_t = \sum_{h=0}^{\infty} \mathbf{A}_h \boldsymbol{\varepsilon}_{t-h}, \quad \mathbf{A}_0 = \mathbf{I}Ah=Φ1Ah1+Φ2Ah2++ΦpAhp\mathbf{A}_h = \mathbf{\Phi}_1 \mathbf{A}_{h-1} + \mathbf{\Phi}_2 \mathbf{A}_{h-2} + \cdots + \mathbf{\Phi}_p \mathbf{A}_{h-p}


🇬🇧 English

xt=h=0Ahεth,A0=I\mathbf{x}_t = \sum_{h=0}^{\infty} \mathbf{A}_h \boldsymbol{\varepsilon}_{t-h}, \quad \mathbf{A}_0 = \mathbf{I}Ah=Φ1Ah1+Φ2Ah2++ΦpAhp\mathbf{A}_h = \mathbf{\Phi}_1 \mathbf{A}_{h-1} + \mathbf{\Phi}_2 \mathbf{A}_{h-2} + \cdots + \mathbf{\Phi}_p \mathbf{A}_{h-p}


3. Generalized Forecast Error Variance Decomposition (GFEVD)

🇮🇩 Indonesia

θijg(H)=σjj1h=0H1(eiAhΣej)2h=0H1(eiAhΣAhei)\theta^{g}_{ij}(H) = \frac{ \sigma_{jj}^{-1} \sum_{h=0}^{H-1} \left( \mathbf{e}_i^{\prime} \mathbf{A}_h \boldsymbol{\Sigma} \mathbf{e}_j \right)^2 }{ \sum_{h=0}^{H-1} \left( \mathbf{e}_i^{\prime} \mathbf{A}_h \boldsymbol{\Sigma} \mathbf{A}_h^{\prime} \mathbf{e}_i \right) }

Keterangan simbol:

  • θijg(H)\theta^{g}_{ij}(H): kontribusi shock jj terhadap varians kesalahan prediksi iii
  • HH: horizon peramalan
  • ei\mathbf{e}_i: vektor seleksi (1 pada posisi iii, 0 lainnya)
  • σjj\sigma_{jj}: elemen diagonal ke-jj dari Σ\boldsymbol{\Sigma}

🇬🇧 English

θijg(H)=σjj1h=0H1(eiAhΣej)2h=0H1(eiAhΣAhei)\theta^{g}_{ij}(H) = \frac{ \sigma_{jj}^{-1} \sum_{h=0}^{H-1} \left( \mathbf{e}_i^{\prime} \mathbf{A}_h \boldsymbol{\Sigma} \mathbf{e}_j \right)^2 }{ \sum_{h=0}^{H-1} \left( \mathbf{e}_i^{\prime} \mathbf{A}_h \boldsymbol{\Sigma} \mathbf{A}_h^{\prime} \mathbf{e}_i \right) }


4. Normalization of GFEVD

🇮🇩 Indonesia

θ~ijg(H)=θijg(H)j=1Nθijg(H)\tilde{\theta}^{g}_{ij}(H) = \frac{ \theta^{g}_{ij}(H) }{ \sum_{j=1}^{N} \theta^{g}_{ij}(H) }j=1Nθ~ijg(H)=1\sum_{j=1}^{N} \tilde{\theta}^{g}_{ij}(H) = 1


🇬🇧 English

θ~ijg(H)=θijg(H)j=1Nθijg(H)\tilde{\theta}^{g}_{ij}(H) = \frac{ \theta^{g}_{ij}(H) }{ \sum_{j=1}^{N} \theta^{g}_{ij}(H) }j=1Nθ~ijg(H)=1\sum_{j=1}^{N} \tilde{\theta}^{g}_{ij}(H) = 1


5. Total Spillover Index

🇮🇩 Indonesia

Sg(H)=ijθ~ijg(H)N×100S^{g}(H) = \frac{ \sum_{i \neq j} \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100


🇬🇧 English

Sg(H)=ijθ~ijg(H)N×100S^{g}(H) = \frac{ \sum_{i \neq j} \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100


6. Directional Spillovers

6.1 FROM Others

🇮🇩Sig(H)=jiθ~ijg(H)N×100S^{g}_{i \leftarrow \cdot}(H) = \frac{ \sum_{j \neq i} \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100

🇬🇧Sig(H)=jiθ~ijg(H)N×100S^{g}_{i \leftarrow \cdot}(H) = \frac{ \sum_{j \neq i} \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100


6.2 TO Others

🇮🇩Sig(H)=jiθ~jig(H)N×100S^{g}_{i \rightarrow \cdot}(H) = \frac{ \sum_{j \neq i} \tilde{\theta}^{g}_{ji}(H) }{ N } \times 100

🇬🇧Sig(H)=jiθ~jig(H)N×100S^{g}_{i \rightarrow \cdot}(H) = \frac{ \sum_{j \neq i} \tilde{\theta}^{g}_{ji}(H) }{ N } \times 100


7. Net Spillover

🇮🇩 Indonesia

Sig(H)=Sig(H)Sig(H)S^{g}_{i}(H) = S^{g}_{i \rightarrow \cdot}(H) – S^{g}_{i \leftarrow \cdot}(H)


🇬🇧 English

Sig(H)=Sig(H)Sig(H)S^{g}_{i}(H) = S^{g}_{i \rightarrow \cdot}(H) – S^{g}_{i \leftarrow \cdot}(H)


8. Net Pairwise Spillover

🇮🇩 Indonesia

Sijg(H)=θ~jig(H)θ~ijg(H)N×100S^{g}_{ij}(H) = \frac{ \tilde{\theta}^{g}_{ji}(H) – \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100


🇬🇧 English

Sijg(H)=θ~jig(H)θ~ijg(H)N×100S^{g}_{ij}(H) = \frac{ \tilde{\theta}^{g}_{ji}(H) – \tilde{\theta}^{g}_{ij}(H) }{ N } \times 100


9. Rolling Window Estimation

🇮🇩 Indonesia

VARt={xtw+1,,xt}\text{VAR}_t = \{ \mathbf{x}_{t-w+1}, \ldots, \mathbf{x}_t \}

🇬🇧 English

VARt={xtw+1,,xt}\text{VAR}_t = \{ \mathbf{x}_{t-w+1}, \ldots, \mathbf{x}_t \}